Brain Activity during Slow-Wave Sleep Points to Mechanism for Memory
ثبت نشده
چکیده
Scientists have long known that variation in animal color patterns carry far more than cosmetic signifi cance. Darwin fi rst connected pigmentation with adaptive advantage, noting that male fi nches with bright red plumage enjoyed greater reproductive success than their drab competitors. Explaining why coloration confers such advantages, however, has proved somewhat easier than showing how it arises. Biologists studying how neighboring regions of the vertebrate body plan develop differences in appearance and form have identifi ed a small number of signaling pathways common to all animals. How and whether these pathways also control the developmental expression and variation of surface attributes like hair color, hair density, and hair length are unclear. By studying an old mouse mutant called droopy ear, Gregory Barsh and colleagues show that a member of the well-known family of T-box genes is required for a key pigmentation pattern in mice. Many vertebrate species—be they fi sh, bird, or mammal—have a much lighter belly than back. Studies in mice indicate these dorsoventral pigment differences arise from differential expression of the Agouti gene in the ventral and dorsal regions of the developing mouse; Agouti produces a pale yellow color and thus mice with light bellies have Agouti expressed in their ventral but not dorsal region. Droopy ear was discovered more than 50 years ago by virtue of its effects on head and ear shape, but it also affects pigmentation patterns; mutant mice have expanded ventral-specifi c Agouti expression into the dorsal region. First, Sophie Candille, a graduate student in Barsh’s laboratory, searched for the gene that underlies the defect in droopy ear. When the researchers homed in on the chromosomal region known to harbor droopy ear, they found Tbx15—a member of the T-box gene family. T-box genes are found in a wide range of species and play diverse roles during embryonic development. In the droopy ear mouse, Tbx15 carries a mutation that makes the protein nonfunctional. The researchers made certain that Tbx15 really is the droopy ear gene by deleting most of the gene’s coding region and showing that this “knocked-out’’ gene produces the typical droopy ear mouse. The pattern of embryonic Tbx15 expression—determined by observing messenger RNA transcripts in developing tissues of the head, trunk, and limbs—suggests that early expression of Tbx15 in the dorsal fl ank sets coordinates for dorsoventral differences in hair length and pigmentation. Candille et al. demonstrate that the regional pigment differences characteristic of adults is indeed established soon after embryonic Tbx15 expression. So this boundary in pigmentation is set up very early during development. Interestingly, the early coordinates of the future pigment boundary do not correspond to any other known developmental boundary. The Tbx15 pigmentation effects seen in these lab mice, the researchers note, resembles coat variations in other mammals, including German shepherds and an endangered mouse whose lighter dorsal markings once gave it an adaptive advantage on the white sand reefs where it lives (sadly, such markings offer no protection against loss of habitat). T-box genes are also found in humans; mutations in Tbx1, Tbx4, Tbx5, and Tbx22 can cause developmental abnormalities of the heart, limbs, or of the head and neck. Mutations of human Tbx15 have not yet been identifi ed, but could contribute to regional differences of pigmentation (in dorsal and ventral surfaces of the limbs, for example) or to development of the head and neck. The identifi cation of Tbx15 adds a new player to the genes that help pattern the developing embryo—attention now turns to the controls that regulate Tbx15 and the Tbx15 targets, which set up the pattern.
منابع مشابه
Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats
Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episo...
متن کاملAnalysis of Memory-Related Brain Activation Maps in Sleep-Depriveation using Functional Magnetic Resonance Imaging
Background and purpose: Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI). Materials and methods: In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) w...
متن کاملLearning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation?
Memory consolidation during sleep is regaining attention due to a wave of recent reports of memory improvements after sleep or deficits after sleep disturbance. Neuromodulators have been proposed as possible players in this putative off-line memory processing, without much experimental evidence. We recorded neuronal activity in the rat noradrenergic nucleus locus coeruleus (LC) using chronicall...
متن کاملFear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep.
Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory t...
متن کاملCross-hemispheric Alternating Current Stimulation During a Nap Disrupts Slow Wave Activity and Associated Memory Consolidation
BACKGROUND Slow Wave Activity (SWA), the low frequency (<4 Hz) oscillations that characterize Slow Wave Sleep (SWS) are thought to relate causally to declarative memory consolidation during nocturnal sleep. Evidence is conflicting relating SWA to memory consolidation during nap however. OBJECTIVE/HYPOTHESIS We applied transcranial alternating current stimulation (tACS) - which, with a cross-h...
متن کاملStereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
Alternating epochs of activity and silence are a characteristic feature of neocortical networks during certain sleep cycles and deep states of anesthesia. The mechanism and functional role of these slow oscillations (<1 Hz) have not yet been fully characterized. Experimental and theoretical studies show that slow-wave oscillations can be generated autonomously by neocortical tissue but become m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2004